Age-dependent effects of methylphenidate in the prefrontal cortex: evidence from electrophysiological and Arc gene expression measurements.

نویسندگان

  • Benjamin Gronier
  • James Aston
  • Claire Liauzun
  • Tyra Zetterström
چکیده

Methylphenidate, a drug widely used for attention deficit hyperactivity disorder in children, may affect neuronal function differently in young and adult subjects, particularly in the prefrontal cortex, a brain structure that does not fully develop until adulthood. We compared the impact of development on the effects of methylphenidate on single unit electrical activity and mRNA expression of the effector immediate early gene activity-regulated cytoskeletal-associated protein (Arc) following methylphenidate in the prefrontal cortex in adult (more than 60 days old) and juvenile (25-35 days old) rats. Methylphenidate, administered under urethane anaesthesia to adult rats, at doses ranging from 1 mg/kg to 3 mg/kg intravenously, exerts a progressive activation of firing of prefrontal cortex neurones (30% to 84% from baseline). This activation was significantly lower in the juvenile rats, reaching only 37% of baseline levels at the highest dose (3 mg/kg, intravenous). In adults, methylphenidate (4 mg/kg intraperitoneal) produced marked increases in Arc mRNA levels compared with saline controls by 123% and 164% in cingulated and orbital cortex, respectively. Corresponding values for the juvenile rats were significantly lower (42% and 79%). In summary, this multi-approach investigation showed that the reactivity of prefrontal cortex neurones to methylphenidate differs markedly in juvenile and adult rats.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex

Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...

متن کامل

Mesoporous silica SBA-15 decreases hyperammonemia and affects the gene expression of mitogen-activated protein kinases in the prefrontal cortex of rats with bile duct ligation

Objective(s): We aim to examine possible ammonia lowering effects of mesoporous silica SBA-15 in rats after the common bile duct ligation (BDL). We also evaluate the effect of SBA-15 treatments during 28 days of BDL on locomotion and rearing behavior, as well as on the gene expression of Jnk3 and p38alpha (p38α) mitogen-activated protein kinases in the prefrontal corte...

متن کامل

P142: The Prefrontal Cortex and Stress-Related Psychopathologies

The prefrontal cortex (PFC) plays a central role in processing both normal and pathological affective states and it is among the brain regions most closely associated with stress-related psychopathology in humans. The ventromedial PFC (vmPFC) in particular has been shown to be required for healthy emotional regulation, social function and risk assessment and decision-making. Also this region ex...

متن کامل

Effects of left prefrontal transcranial direct current stimulation on the acquisition of contextual and cued fear memory

Objective(s): Behavioral and neuroimaging studies have shown that transcranial direct current stimulation, as a non-invasive neuromodulatory technique, beyond regional effects can modify functionally interconnected remote cortical and subcortical areas. In this study, we hypothesized that the induced changes in cortical excitability following the application of cathodal or anodal tDCS over the ...

متن کامل

Distinct age-dependent effects of methylphenidate on developing and adult prefrontal neurons.

BACKGROUND Methylphenidate (MPH) has long been used to treat attention-deficit/hyperactivity disorder (ADHD); however, its cellular mechanisms of action and potential effects on prefrontal cortical circuitry are not well understood, particularly in the developing brain system. A clinically relevant dose range for rodents has been established in the adult animal; however, how this range will tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of psychopharmacology

دوره 24 12  شماره 

صفحات  -

تاریخ انتشار 2010